7th Study Conference on BALTEX, Borgholm, Island of Öland, Sweden

Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis

GEOMAR

Andreas Lehmann, Evgenia Gurova^{*} and Andrei Ivanov^{**}

^{*}Atlantic Branch of P.P. Shirshov Institute of Oceanology RAS, Kaliningrad, Russia ^{**}P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia

Upwelling dynamics in the Baltic Sea ... Motivation_{+ +}

Motivation Upwelling areas

Bychkova & Victorov 1987

22 upwelling areas

HELMHOLTZ

Motivation Upwelling 16 July 2006

MODIS SST °C 16 July 2006

Kozlov et al. 2011, ASAR imaging of coastal upwelling in the Baltic Sea

Motivation Basic principles

Ekman transport.

Invitation to Oceanography, 3rd Edition Paul R. Pinet ©2003 Jones and Bartlett Publishers

Figure 6.6

Motivation Basic principles

Krauss & Brügge 1991

Motivation Basic principles

Krauss & Brügge 1991

Upwelling can be discriminated into 2 phases (Zhurbas et al. 2008):

- 1. Active phase
 - Strong wind
 - Strong sea level inclination
 - Cold water reaches the surface
 - Regular upwelling structures
- 2. Relaxation phase
 - Weakened wind
 - Sea level relaxation
 - Still strong temperature/density gradient exists
 - Filaments, squirts and whirls develop

Upwelling dynamics in the Baltic Sea

Material & Methods

- + + + + + +

+ + + + + + + + + + + + + + +

- SAR Envisat ASAR images
 - Back-scattered radar power or normalized radar cross section (NRCS)
 - 2D-picture of sea surface roughness, resolution ~ 150 m
- MODIS (Terra & Aqua)
 SST band, resolution ~ 1 km
- BSIOM 3D coupled sea ice-ocean model of the Baltic Sea (Lehmann & Hinrichsen 2000)
 - Horizontal resolution 2.5 km
 - 60 vertical levels
 - Model domain: Baltic Sea including Skagerrak & Kattegat
 - Forcing: river runoff (Kronsell & Andersson 2011), atmosphere SMHI Met data base (Lars Meuller pers. Comm.)
 - Wind stresss drag coefficient is calculated according to Large and Pond (1981) depends on the roughness length and a stability correction.

Upwelling dynamics in the Baltic <u>Sea</u> ... Results + +

Results Wind data SMHI Met⁺data base ⁺

Results SST °C MODIS & BSIOM ⁺

GEOMAR

Results SAR & BSIOM 16 July 2006

HELMHOLTZ

Results MODIS & BSIOM 19⁺July 2006

Results SAR & BSIOM 19 July 2006

HELMHOLTZ

Results Wind data SMHI Met⁺data base ⁺

Results MODIS May/June 2008^{+ +}

HELMHOLTZ

ASSOCIATION

Results SAR & BSIOM 29 May, 2 June 2008

Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis Conclusions + + +

Conclusions

- The combined analysis of observations and hydrodynamic model is superior to single methods alone
- Model results are in good agreement with observations (MODIS/SAR)
- Over upwelling areas the wind stress (drag coefficient) can be reduced if the wind speed is below a certain threshold (SAR & BSIOM)
- During the active phase of upwelling:
 - Wind is strong
 - Cold water reaches the surface
 - Strong inclination of the sea level
 - Coastal jet is mainly barotropic
 - Coastal jet is controlled by vorticity dynamics in relation to depth variation in direction of the flow
 - The meandering coastal jet is associated with the position of upwelling structures (regular)
 - Transport of the coastal jet along the coast ~ 10⁴ m³ s⁻¹
 - Transport offshore is in the order of 10³ m³ s⁻¹

Conclusions

- During the relaxation phase of upwelling:
 - Wind is weakened
 - Still strong temperature/density gradients exist
 - Relaxation of the sea level inclination
 - Baroclinic jet is associated with the temperature gradient
 - This jet might become instable (irregular) by baroclinic instabilities
 - Filaments, squirts and whirls (Zhurbas et al. 2008) can be produced
 - To simulate the full spectrum of mesoscale variability a horizontal grid resolution of at least 1 km is necessary

